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A broad view on magnetic reconnection

Fundamental problems & research

- Reconnection rate problem
- Three-dimensional (3D) nature of reconnection

Summary



Background

-- All about the geometry & topology
of magnetic field lines



Plasmas
4th state of matter
> 99% of visible universe*

Plasma Lamp Fusion device Lighting

Aurora Borealis

Interaction between lots" of charge particles + electromagnetic fields
-- complicated & nonlinear!!

Long range electromagnetic interaction!!
-- the evolution CANNOT be described by thermodynamics.
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Solar Eruption
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M e WALR
B~200 Gauss (Courtesy of NASA)

(Courtesy of SDO mission) T~3.000.000 K

® Energy up to 10%? ergs is released in ~ 20 mins
-- 40 billion atomic bombs!
® Matter up to 10'° tons is erupted.



Magnetic Reconnection!?

inflow

outflow outflow

Z field line acts like slingshot
L)X .
inflow
|. Inflow brings in magnetic flux (frozen-in)
2. Field lines break & reconnect (frozen-in is violated !!)

3. Reconnected field line shoots out plasma  (frozen-in)
4. Pressure drop sucks in plasma inflow

|. Inflow brings in magnetic flux (frozen-in)
2. ...

3. ...
A self-driven process!!!



Earth’s magnetosphere
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magnetosheath magnetosphere magnetotail
B ~ 20nT B ~ 60nT B ~ 20nT
n ~ 15¢m™° n ~ 0.5cm ™3 n ~ 0.0lem™?

® Reconnection occurs at both the magnetopause & magnetotail.
® Reconnection at the magnetotail drives magnetospheric substorm
& enhances aurora.



A billion $ NASA mission designed to study
magnetic reconnection

Magnetospheric Multiscale Mission (MMY)
March 12,2015

ATLAS rocket

@ Kennedy Center, FL
http://mms.gSfC.nasa.gOV tight tetrahedron formation: separation down to 7 km!

| 00x faster for electrons measurement (30 ms)
30x faster for ions measurement (150 ms)

* MMS leads us into a stage where the electron-scale physics of magnetic reconnection,
in nature, can be resolved in an unprecedented manner!!


http://mms.gsfc.nasa.gov
http://mms.gsfc.nasa.gov

The trailer of MMS ...
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Briefing of MMS mission
02/25/2015 @ NASA headquarter

Moderator NASA Project Project Guest
Headquarter Pl Scientist Researcher




Astrophysical systems

8 HELICAL WIND o]

Superflares @ Crab Nebula

o 2 HELICAL WIND ®

Top view

N

time scale ~days

J

* Strong magnetic fields are dissipated quickly! (o-problem)
* Relativistic reconnection could be important, and at

other places like:
Jets from active galactic nuclei (AGN)/ black holes

Gamma-Ray bursts (GRBs)



ITER @ southern France
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(fake) Fusion reactors in Hollywood

Doctor Octopus in Spider man |
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Laboratory plasmas
Fusion device Reconnection Experiment

MRX @ PPPL
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e.g,, ITER Tokamak @ France

‘ inner poloidal :
toroidal magnetic field coils €Ot current outer poloidal

magnetic field coils magnetic field coils

FLARE @ PPPL TREX @
U. Wisconsin

LAPD @
UCLA
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e Reconnection causes the Sawtooth crashes in Tokamak!
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SCIBHCE Discover- Science News- People (4' For Researchers- Learners- Citizen Scientists G
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Honey, | Blew Up the Tokamak
f | v s[S]e .

+ Play Audio | + Download Audio | + Join mailing list

August 31, 20093Magnetic reconnection could be the Universe's favorite way to make

things explode. It operates anywhere magnetic fields pervade space--which is to say

almost everywhere. Pn the sun magnetic reconnection causes solar flares as powerful

as a billion atomic bombs. In Earth’'s atmosphere, it fuels magnetic storms and auroras. In 3
laboratories, it can cause big problems in fusion reactors. It's ubiquitous. 4



Fundamental problems & research



| /2. Reconnection Rate Problem

- How quickly can reconnection process magnetic flux?



Magnetic tension & Alfven waves
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, v : vibration of guitar strings
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Sweet-Parker solution (1957)

Vin o)

Vin

- — — — — — — — |l - - - - - — — — -

mass conservation: Y/ . (nV) ~ 0 S Vi, L~V,..0
mn — ou
B-VB B
momentum eq.: ~nm;V -VV — Vout =~
4 drnm,;
tension inertia

. . Vi 0
normalized reconnectionrate — |R = ~ —
Va L

e However, this model has a small d/L,
the rate is too small to explain the time-scales in solar flare.

* To explain the flares, it requires R~ 0.1.



Petschek solution (1964)

SS
(slow shocks)

SS

0

Reconnection rate is much larger because R ~ — ¢

L

e However, this is not a self-consistent solution.

*aspect ration = aspect ratio of the diffusion region



Reconnection in particle-in-cell (PIC) simulations

Jy

0
B and y—current density, t= 0.00 x10
— 1.5

| x/di di: ion inertial scale.
X

* The diffusion region is localized like the Petschek solution.
* Why PIC? Why not using magnetohydrodynamics (MHD)!?

-- because PIC captures the key physics that breaks the frozen-in condition in nature.



GEM Reconnection Challenge (2001)
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* the importance of Hall term in Ohm’s Law was debated for the past 16 years.

* A similar reconnection rate R~ 0.| is reported
in most models & over a wide parameter range!



To be solved.

Q:Why is the fast reconnection rate order 0.1 in disparate systems!?
-- including PIC, hybrid, Hall-MHD, MHD with a localized resistivity...etc

*clue: can not be the diffusion-scale physics!



Explanation of rate ~ 0.1

-- Geometrical consideration!

In the small /L limit, R ~ /L — 0

Vout. ___________________________
How about the large 0 / L limit? magnetic separator
e ',"'\ opening angle

It turns out that when § /1, — 1, R—0!

-- Hey~ then there should be an optimized Rmax in between!
-- This Rmax may explains the value 0.1 !



Explanation of rate ~ 0.1

-- Geometrical consideration!

In the large §/L limit .....

tension magnetic pressure inertia
. B?
B-.vB _ V(B) | uv.ovv
47 ST
@ inflow region @ outflow region
B =—
————
—> decease the reconnecting field!!! — decrease the outflow speed!!!
— R — R

e Constraints imposed at the inflow & outflow region (upper) bound the rate!



Explanation of rate ~ 0.1

-- Geometrical consideration!

d
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(magnetic separator)

* Reconnection tends to proceed near the most efficient state with R ~ O(0.1). v
* Nicely, rate is insensitive to O/L near this state. v



QI: Why fast rate R~ O(0.1)? v/

Q2: Why is reconnection slow in the resistive-MHD case!?
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requires more thinking...



2/2. Three- dimensional nature of reconnection

- How about the freedom coming from the extra dimension?



An example 3D simulation
J/Jo

382

tw
Distinct 3D features, including

® flux ropes.
® kink instability.
® turbulence.



3D diffusion region can be fundamentally different!!
(a) 2D case x-line ion diffusion region

3D case

'
...
u
l
I
'
n

_.4-_
P f \
1\

N ~
) ) g . . — current
~ —11 ~U5 ] density  (Liuecal, PRL2013)

Q:What is causing this! consequence?



To be solved.

Q:What is causing the bifurcation of electron diffusion region?



Global structure

guide field
ByO/BxO = 2.9

Vout

|0 million CPU-hours
| trillion particles

' J'WW{ -, *Computation™

) : ) _
density

*clue: bifurcated layer is located in between these intertwined flux ropes.
& tearing modes give rise to these flux ropes!



Explanation of the bifurcation
-- oblique tearing modes!

Resonant surfaces @ k- B = 0
s —tanh ! <kyByO>

initial thickness — )\ k:p B:L'O

0 = tan(k,/kx)

* 2D only allows the parallel tearing mode.
i.e., no bifurcation.



Explanation of the bifurcation
-- oblique tearing modes!

oblique tearing mode (k, #

Resonant surfaces @ k- B = 0

Zs _1 ( kyByo
“ — _tanh
) o ( kB, )

0 = tan(k,/kx)

* 3D allows a spectrum of oblique tearing modes, unlike 2D.



Explanation of the bifurcation
-- oblique tearing modes!

* Bifurcated or Not, depends on the competition between oblique & parallel tearing modes!



N . ™
i

..................................................... e ' 2Ff

Explanation of the bifurcation

-- oblique tearing modes!

growth rate of tearing modes

A reminder Byo/Bao = 2.5

e

- s
f — ” 2 ';’::::
- 2 = \’\\'

* The most unstable tearing mode should dominate!!
* Theory predicts that the oblique mode dominates when B,o/Bxo > |. \/



Open Questions

With a thicker current sheet, like that in the solar flare

a A,

]A ~_ v ou, o

J— e ————

MQ Car
A

Lots of resonant surfaces are possible!
Q: How do these oblique tearing modes interact & volume-fill the current sheet!?

Q: Reconnection rate! Energy dissipation?! Particle acceleration??
(Fermi-type acceleration? or direct acceleration?)



Summary

* Magnetic reconnection is an important energy release process in plasmas,
and it is relevant in space, solar, astrophysical & laboratory plasmas.

* Reconnection rate problem & 3D nature of reconnection are discussed.

* Reconnection is relevant to many exciting on-going & future projects:
MMS, Solar Prob +, FLARE, TREX, LAPD, ITER, HAWC,......etc.

* Nowadays, simulations and analytical techniques allow us to study
a wide range of problems in plasmas physics.

* Lots of interesting problems; Lots of opportunities for students.


















An example run shows the imbedding effect

IIIITIIIIIIT{TI "|0
1 1
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100 s | i
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-100 -50 O 50 100 -1.0 -05 0 05 1.0

* Reduction of the reconnecting field immediately upstream of
the diffusion region (micro-scale) is observed.

* Local reconnection rate Ro~ O(0.1) does not go up even when
the micro-scale rate R, goes up to ~ O(1).



Let a fluid filament initially following the closed contour S be given and let @ be
the initial flux of B through it. A short interval dr later, each element d/ of the contour
will have been displaced by an amount v dr, sweeping in the process an area
(v xdl) dr (Figure 1). In this time interval, @ changes by an amount d®, ascribable

(¥ x &) dt

Fig. 1.
to two causes. The time variation of the field contributes the surface integral

0
fj - dA dt (4-4)
ot

while the variation of the area bounded by the filament adds the flux through the area
swept by it (Figure 1), equaling

§B-(vxdl)dt = — [V x (v x B)dA dt (4-5)
Thus
do =I(%? -V x (v x B))-dA dr (4-6)
Combined with d® = (0 (Frozen-in) if E+ vxbB = VP

Faraday’s law C



Q: How could special relativity affect reconnection?

mass conservation: Vo, tMoyutO = VinNin L

Alfven Speed: Va — o
C l4+o0

Magnetization param: 0 = B—2 Enthalpy: w = n.mec® + LP/
g P : STW pYy-: e'lte r—1 ¢

® Reconnection rate can be enhanced?



Scaling of micro-scale inflow speed & reconn
(a) By =0 (c) or = 88.9
1 prediction | ‘ | B | | | ‘ predﬁcﬁon’
L © gy O
Vin o6/ 9 & Y
0:2 <><§> Q-Qx ] I <> 0']<> ]
o0 | | L - | | | 9
(b) 1 prediction | | (d) ‘ | | | ‘ predicﬁon’
0_88;?(228_”% & 9 e 0.5 | OHaris
0.6 & O
( R) o4 <§><>Q.\ S ] OV
rate N ' |
0'2 SO % S . 0.01 % % |
10‘2 160 162 104 (5 012 014 0.‘6 0.‘8 'i
Oy BQ/BO

® Lorentz contraction + geometry factor ~ 0.

Vi o
— =0.1
cC \/1 + o0, +0.0lo,

. rate
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0 10 20 30 40
t
Ohm’s Law: V = RI
T convection r%sis. Hall term pressure inertia
Ohm’s Law in plasmas: E + vixB _ nJ + LJ <« B — iv P, + me dJ/n
c nec ne e dt
MHD: slow
Hall MHD: v/ v i
Hybrid: ¢/ V4 Vv fast
PIC: v v v l
However, electron-positron (PIC): v v
strong guide field limit (PIC): v v

Q: Why is the fast rate R~ 0.1



